1,089 research outputs found

    Magnetic relaxation of type II superconductors in a mixed state of entrapped and shielded flux

    Full text link
    The magnetic relaxation has been investigated in type II superconductors when the initial magnetic state is realized with entrapped and shielded flux (ESF) contemporarily. This flux state is produced by an inversion in the magnetic field ramp rate due to for example a magnetic field overshoot. The investigation has been faced both numerically and by measuring the magnetic relaxation in BSCCO tapes. Numerical computations have been performed in the case of an infinite thick strip and of an infinite slab, showing a quickly relaxing magnetization in the first seconds. As verified experimentally, the effects of the overshoot cannot be neglected simply by cutting the first 10-100 seconds in the magnetic relaxation. On the other hand, at very long times, the magnetic states relax toward those corresponding to field profiles with only shielded flux or only entrapped flux, depending on the amplitude of the field change with respect to the full penetration field of the considered superconducting samples. In addition, we have performed numerical simulations in order to reproduce the relaxation curves measured on the BSCCO(2223) tapes; this allowed us to interpret correctly also the first seconds of the M(t)M(t) curves.Comment: 9 pages, 12 figures submit to PR

    Harmonics of the AC susceptibility as probes to differentiate the various creep models

    Full text link
    We measured the temperature dependence of the 1st and the 3rd harmonics of the AC magnetic susceptibility on some type II superconducting samples at different AC field amplitudes, hAC. In order to interpret the measurements, we computed the harmonics of the AC susceptibility as function of the temperature T, by integrating the non-linear diffusion equation for the magnetic field with different creep models, namely the vortex glass-collective creep (single-vortex, small bundle and large bundle) and Kim-Anderson model. We also computed them by using a non-linear phenomenological I-V characteristics, including a power law dependence of the pinning potential on hAC. Our experimental results were compared with the numerically computed ones, by the analysis of the Cole-Cole plots. This method results more sensitive than the separate component analysis, giving the possibility to obtain detailed information about the contribution of the flux dynamic regimes in the magnetic response of the analysed samples.Comment: 9 pages, 6 figures, submitted to Physica

    BiOCuS: A new superconducting compound with oxypnictide - related structure

    Full text link
    The discovery of about 50 K superconductivity in the tetragonal Fe-based pnictides has stimulated the search for superconductivity in a wide class of materials with similar structure. Copper forms compounds isostructural to LaOFeAs. Single phase BiOCuS can be prepared by a solid state reaction at temperature lower than 500 C from a mixture of Bi2O3, Bi2S3 and Cu2S. The samples have been characterized by means of EDX analysis, X-ray diffraction, magnetic and electrical measurements. The cell parameters are a = 3.8708 A, c = 8.565 A. Charge carrier doping can be realized either by F substitutions for O, or by Cu off-stoichiometry. The latter doping route leads to the occurrence of superconductivity below Tc = 5.8 K

    Strong improvement of the transport characteristics of YBa2_\textrm{2}Cu3_\textrm{3}O7-x_\textrm{7-x} grain boundaries using ionic liquid gating

    Full text link
    For more than 30 years, the remarkable superconducting properties of REBa2_\textrm{2}Cu3_\textrm{3}O7-x_\textrm{7-x} (RE = rare earth) compounds have triggered research studies across the world. Accordingly, significant progresses have been made both from a basic understanding and a fabrication processes perspective. Yet, today, the major technological bottleneck towards the spread of their practical uses remains the exponential decay of their critical current with grain misorientation in polycrystalline samples. In this work, we used an ionic liquid to apply extremely high transverse electric fields to YBa2_\textrm{2}Cu3_\textrm{3}O7-x_\textrm{7-x} thin films containing a single well-defined low-angle grain boundary. Our study shows that this technique is very effective to tune the IV characteristics of these weak-links. In-magnetic field measurements allow us to discuss the type of the vortices present at the grain boundary and to unveil a large variation of the local depairing current density with gating. Comparing our results with the ones obtained on chemically-doped grain boundaries, we discuss routes to evaluate the role of local strain in the loss of transparency at cuprates low-angle grain boundaries. In short, this study offers a new opportunity to discuss scenarios leading to the reduced transport capabilities of grain boundaries in cuprates

    Assessing composition gradients in multifilamentary superconductors by means of magnetometry methods

    Full text link
    We present two magnetometry-based methods suitable for assessing gradients in the critical temperature and hence the composition of multifilamentary superconductors: AC magnetometry and Scanning Hall Probe Microscopy. The novelty of the former technique lies in the iterative evaluation procedure we developed, whereas the strength of the latter is the direct visualization of the temperature dependent penetration of a magnetic field into the superconductor. Using the example of a PIT Nb3Sn wire, we demonstrate the application of these techniques, and compare the respective results to each other and to EDX measurements of the Sn distribution within the sub-elements of the wire.Comment: 7 pages, 8 figures; broken hyperlinks are due to a problem with arXi

    Spin Coulomb drag beyond the random phase approximation

    Get PDF
    We study the spin Coulomb drag in a quasi-two-dimensional electron gas beyond the random phase approximation (RPA). We find that the finite transverse width of the electron gas causes a significant reduction of the spin Coulomb drag. This reduction, however, is largely compensated by the enhancement coming from the inclusion of many-body local field effects beyond the RPA, thereby restoring good agreement with the experimental observations by C. P. Weber \textit{et al.}, Nature, \textbf{437}, 1330 (2005).Comment: 3 figures, accepted for publication in Phys. Rev. Let

    Exchange and correlation effects on the plasmon dispersions and the Coulomb drag in low-density electron bilayers

    Full text link
    We investigate the effect of exchange and correlation (xc) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a new approach, which employs dynamic xc kernels in the calculation of the bi-layer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bi-layer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and inter-layer correlation effects. We observe that both plasmon modes are strongly affected by xc corrections. After the inclusion of the complex dynamic xc kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. And this is in stark contrast to the tendency obtained within the RPA that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of xc corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the xc corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by M. Kellogg {\it et al.}, Solid State Commun. \textbf{123}, 515 (2002).Comment: 28 pages, 15 figure

    The consistency condition for the three-point function in dissipative single-clock inflation

    Full text link
    We generalize the consistency condition for the three-point function in single field inflation to the case of dissipative, multi-field, single-clock models. We use the recently introduced extension of the effective field theory of inflation that accounts for dissipative effects, to provide an explicit proof to leading (non-trivial) order in the generalized slow roll parameters and mixing with gravity scales. Our results illustrate the conditions necessary for the validity of the consistency relation in situations with many degrees of freedom relevant during inflation, namely that there is a preferred clock. Departures from this condition in forthcoming experiments would rule out not only single field but also a large class of multi-field models.Comment: 26+11 page

    A Naturally Large Four-Point Function in Single Field Inflation

    Full text link
    Non-Gaussianities of the primordial density perturbations have emerged as a very powerful possible signal to test the dynamics that drove the period of inflation. While in general the most sensitive observable is the three-point function in this paper we show that there are technically natural inflationary models where the leading source of non-Gaussianity is the four-point function. Using the recently developed Effective Field Theory of Inflation, we are able to show that it is possible to impose an approximate parity symmetry and an approximate continuos shift symmetry on the inflaton fluctuations that allow, when the dispersion relation is of the form ω∼csk\omega\sim c_s k, for a unique quartic operator, while approximately forbidding all the cubic ones. The resulting shape for the four-point function is unique. In the models where the dispersion relation is of the form ω∼k2/M\omega\sim k^2/M a similar construction can be carried out and additional shapes are possible.Comment: 13 pages, 1 figure. v2: extended discussion on near-de-Sitter model

    Galilean symmetry in the effective theory of inflation: new shapes of non-Gaussianity

    Full text link
    We study the consequences of imposing an approximate Galilean symmetry on the Effective Theory of Inflation, the theory of small perturbations around the inflationary background. This approach allows us to study the effect of operators with two derivatives on each field, which can be the leading interactions due to non-renormalization properties of the Galilean Lagrangian. In this case cubic non-Gaussianities are given by three independent operators, containing up to six derivatives, two with a shape close to equilateral and one peaking on flattened isosceles triangles. The four-point function is larger than in models with small speed of sound and potentially observable with the Planck satellite.Comment: 23 pages, 6 figures. v2: minor changes to match JCAP published versio
    • …
    corecore